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ABSTRACT 
We present a study in which we used formal methods to 
reason precisely about aspects of a widely used sofrware 
architectural standard, namely Microsoft’s Component 
Object Model (COM). We developed a formal theory of 
COM to help us reason about a proposed compositional 
architectural style based on COM, intended for use in a 
novel commercial muhirnedia authoring system. The style 
combined COM objects, integration mediators, and the 
COM reuse mechanism of aggregation. Our use of formal 
methods averted an architectural disaster by revealing 
essential but subtle and counterintuitive properties of COM. 
We partially validated our theory by subjecting it to review 
by the designers of COM and by testing it against other 
available data. The theory has good evidential support. 

Keywords 
Software engineering, formal methods, partial specification, 
architecture, integration, mediator, Component Object 
Model, COM, OLE, ActiveX, empirical, Microsoft, 
multimedia 

INTRODUCTION 
The architectural designs of a vast number of systems will 
depend on widely used architectural standards. Today, such 
standards include Microsoft’s Component Object Model 
(COM) [7] and the Object Management Group’s Common 
Object Request Broker (CORBA) [S]. 

Such standards should be treated as critical infrastructure 
systems. Architectural standards that provide foundations 
for the interoperation of independent applications are 
especially critical, because errors resulting from improper, 
unanticipated or innovative use of such standards might go 
unnoticed until interactions among fully deployed 
applications finally reveal “killer” design faults. 
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Any lack of clear guidance in the proper application of an 
architectural standard puts adopters at an undisclosed risk 
of making errors in the critical, early architectural stages of 
system design. To the extent practicable, users should be 
relieved the burden of having to reason about subtle but 
critical aspects of such standards. The designers of such 
standards should specify their subtle aspects carefully, and 
determine their architecturally important properties. The 
products of these efforts should then be made available in 
the form of tools, documentation, or even theorems, to help 
users verify the legality of proposed uses of such standards. 

This paper presents a study in which we used formal 
methods [9,19,20] to develop a theory of a de facto 
software architectural standard, namely Microsoft’s 
Component Object Model (COM). We did this to reason 
effectively about the conformance of a proposed COM- 
based architectural style to the standard. In the absence of 
prior work articulating architecturally critical properties, 
and in the presence of what we saw as subtleties, we had to 
bear the burden of reasoning precisely about the standard. 

At stake was Socha Computing’s multimedia authoring 
system, Herman. Our approach averted a costly 
commitment to a flawed architectural style based on a 
combination of mediators [21,22,23], COM objects, and the 
COM reuse mechanism of aggregation. 

The work described in this paper began when our initial, 
informal attempt to convince ourselves of the legality of the 
proposed style failed. Subtleties in the design of COM and 
the silence of the published specification on key issues 
made it hard to reason informally with confidence. To 
facilitate reasoning, we decided to capture relevant aspects 
of COM in the form of a mathematical theory from which 
we could deduce key properties of the standard. 

We began by sketching a modestly rigorous theory using 
basic set theory concepts, based on a careful reading of the 
COM specification [7]. We were astonished to find that the 
theory predicted that our use of aggregation was illegal. 
We concluded tentatively that our proposed style was 
illegal, because, in particular, it appeared that the COM 
specification precluded the use of COM aggregation as a 



compositional information hiding mechanism. 

We then tested our theory by submitting our conclusion for 
review by the designers of COM, and by checking it against 
other documents [ 11,12,18]. We found our conclusion to 
be inconsistent with the designers’ intentions. Our initial 
theory was thus not entirely correct. 

We revised the theory somewhat to accommodate the new 
data. The revised theory led us to conclude that 0~ 
proposed style was not inconsistent with the rules of COM, 
but that it wouldn’t work as desired. We also concluded 
that COM is even subtler than we at first believed. 

Having refined our theory, we decided to try to build 
additional confidence in it by increasing our level of rigor. 
We expressed the theory in the Z language [20], checked its 
syntax using the Z/Eves system [14], and proved our 
theorems more rigorously. While our main architectural 
insights emerged from the work done at a modest level of 
rigor, we obtained deeper insight into the precise nature of 
COM when we made the theory precise. 

The rest of the paper is organized as follows. First, we 
summarize the relevant aspects of COM. Next, we present 
our proposed architectural style. Following that, we give a 
brief overview of the problems we encountered. The next 
section presents our formal theory, and the one after that 
presents our two key theorems. Next we use the theorems 
to reason about two COM-based architectural styles, 
including our own. We then summarize our results, discuss 
related work, and finally conclude. 

COM AS AN ARCHITECTURAL STANDARD 
COM is an important architectural foundation for much 
component-based software. As an architectural standard, 
COM defines the form of the components from which such 
systems are built, several reuse and composition 
mechanisms, and a set of properties that objects and 
compositions of objects should have. As a widely used 
standard it exerts an important influence on the world of 
real software. COM is the architectural foundation for OLE 
[5] and ActiveX [25], which are themselves foundations for 
important systems used by many individuals and by large 
segments of industry, government, and the military. 

For our purposes, COM has several key features. First, a 
COM object exposes multiple interfaces. Each interface 
defines a set of operations for one service that the object 
supports: e.g., persistence, cut-and-paste, and domain- 
specific computation. Each interface belongs to one or 
more interface types, each of which is identified by unique 
interface identifiers (IID). COM objects int&act with each 
other solely through pointers to their respective interface 
instances. See Fig. 1. 
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Fig. 1 Components (rectangles) expose interfaces 
(circles) that are accessed through pointers (arrows). 

Second, every interface exports a special operation called 
QueryZnte@zce. Querylnrerface allows a client with a 
pointer to any interface on an object to obtain pointers to 
other interfaces on the same object. Querylnterface allows 
objects that were designed independently to negotiate 
communication protocols dynamically. As the basis for the 
interoperation of COM-based systems, Quer)llnteduce is 
the heart of COM. “There is nothing as important to COM 
as QueryZnterjuce [18, p. 561.” It is here, with 
Querylnterface, that we had our architectural difficulties. 

In more detail, QueryZnte@zce takes an ZID as a parameter 
and returns, through another parameter, a pointer to an 
interface of the designated type on the same object, If the 
object does not support the designated type of interface, 
QueryZnterface returns a null pointer. The return value 
indicates whether an interface was returned successfully. 

Most of COM’s reuse and composition mechanisms are 
traditional object-oriented design constructs. They include 
explicit procedure invocation, implicit invocation [ 141, and 
delegation of calls to contained objects. However, COM 
also provides an innovative mechanism called aggregation. 
In aggregation, one object, the outer, contains other objects, 
the inners. When the outer object is queried for an 
interface, it can return a pointer to an interface that actually 
belongs to an inner object. 

Aggregation is useful when an inner object provides an 
interface whose implementation matches the one required 
by clients of the outer object. Aggregation permits calls 
made by clients to be handled by the inner without the 
overhead that would be required for the outer to delegate 
calls to the inner. In Fig. 2, two of the interfaces of the outer 
object are actually obtained from inner objects. 

Fig. 2 An outer object aggregates two inner objects and 
exposes two of their interfaces to its clients 



Fig. 3 Composition of two multimedia components (CDib and CFile) into a larger multimedia component (CFileDib) 
through the use of a mediator (CPersistDib) and COM aggregation (by CFileDib). Some interfaces of the subsystem 
components @InterfaceA and IInterfaceB) are hidden by the outer object; others are exposed (IDib and IPersistFile). 
In addition, the outer object exports its own interface (Iunknown). 

THE PROPOSED ARCHITECTURAL STYLE 
The proposed architectural style for Herman was driven by 
two basic requirements. First, it had to support drag-and- 
drop manipulation of multimedia components. Second, it 
had to support the recursive composition of independent 
multimedia components into larger components. 

Drag-and-drop was to be based in part on a decision to 
implement multimedia components as COM objects. The 
compositionality requirement was to be met through a 
combination of mediators and aggregation. Mediators 
[21,22,23] provided an attractive mechanism for integrating 
components into subsystems. Aggregation was to support 
abstraction of subsystems through the encapsulation and 
export of selected interfaces. This architectural style 
appeared to use COM in a simple, straightforward way. 

Fig. 3 illustrates the style. The mediator (rounded rectangle) 
integrates the components (rectangles) into a subsystem, 
which is then aggregated to make a larger component (outer 
rectangle). The essence of the proposed approach was the 
selective hiding of the interfaces of the aggregated objects. 
By supporting the selection of variant components and 
mediators, such aggregates would define reference 
architectures [3,4] for families of related multimedia 
components-an interesting idea that we can’t pursue 
further in this paper. 

OVERVIEW OF THE PROBLEM 
An initially minor concern for the legality of the proposed 
architectural style led us to try to convince ourselves of its 
legality. The more we worked on this, the more we realized 
that it was hard to reason about some non-obvious aspects 
of COM. Our need to understand these subtleties led us to 
use formal methods to build an abstract model, or theory, of 
the aspects of concern. 

The first version of our theory indicated that our style 
violated the COM standard, and, that many other seemingly 
natural designs would, too. In particular, we disproved the 
putative theorem that COM aggregation supports 
abstraction through the selective hiding of the interfaces of 
aggregated objects. COM appeared not to support such 
abstraction. Specifically, we proved that an outer object 
would have to export interfaces for all types of interfaces 
exported by inner objects. See Fig. 3 again. Our theory said 
that the absence of interfaces of types IZnterfaceA and 
ZIntelfaceB on the outer CFileDib component would be 
illegal. As a corollary, we concluded that our architectural 
style was illegal, because it depended on selective hiding of 
interfaces. 

After a subsequent exchange with the developers of COM, 
we amended our theory and revised our conclusion. On the 
basis of our revised theory we proved two key results that 
we now believe to be valid. First, aggregation compromises 
object identity as defined by COM. In particular, the 
mediator in Fig. 3 would find CDib and CFile to have the 
same object identity. Second, although selective hiding is 
legal, its use implies that inner objects do not satisfy the 
rules for Querylnterface, and therefore that they cannot be 
treated as legal COM objects by other objects such as our 
mediators. Our use of COM aggregation as a composition 
mechanism therefore presented much more serious 
difficulties than we had anticipated. 

FORMAL MODEL AND REASONING 
We now present our revised and formalized model of the 
relevant aspects of COM, using basic concepts from first- 
order set theory, expressed in the 2 language [20]. In the 
next section, we use this model to deduce expected 
properties of COM, which we model as theorems in our 
theory. 
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Interfaces 
Each COM interface instance (or infe@zce) belongs to at 
least one component and satisfies one or more interface 
specifications (specifications or types). Like abstract 
classes, specifications declare the operations of interfaces. 
Like concrete classes, components bind implementations to 
the operations declared by their interfaces. We need not 
discuss implementations any further. A unique interface 
identifier (or ZZD) identifies each specification. We model 
interfaces, specifications and ZZDs as given sets of 
unelaborated entities in Z, as their details are irrelevant. 

[ZZD, Interface, InterjhceSpec] 

The heart and distinguishing feature of COM is a special 
interface type, IUnknown, whose ZZD is ZZD-ZUnknown. 
ZUnknown exports three operations. Two that we do not 
discuss further support reference counting for garbage 
collection. The third is Querylnterface. All COM 
interfaces can be viewed as inheriting from, i.e., as being 
polymorphic with, IUnknown. Thus, all COM interfaces 
export the QueryZnte$zce operation. We formalize 
ZUnknown as a specification, and ZZD-ZUnknown as an ZZD 
in the following Z axiom. 

: lnter$aceSpec 
ZlDJUnknown : ZZD 

We model the association of each interface specification 
with its unique ZZD as a total one-to-one function that, in 
particular, associates ZUnknown with ZZD-ZUnknown. 

ZlDOJTnterfaceSpec : Znte$aceSpec H ZZD 

= ZlDJUnknown 

We model the polymorphism of all interfaces with 
ZUnknown as a relation ZntelfaceSpecOf that maps 
interfaces to the specifications they satisfy. The predicate, 
which treats the relation as a set of tuples, requires every 
interface to satisfy at least the ZUnknown specification. 

ZnterfaceSpecOf : Znte$ace tj Znte@ceSpec 

t- Znter$ace x {IUnJcnown} G ZnterfaceSpecOf 

Next, we use simple relational composition to define a new 
relation, ZZDOjZnte@zce, which maps each interface to the 
ZZDs of the specifications that the interface satisfies. It is 
easy to see is that ZZDOfrntelface maps each interface to at 
least ZZD-ZUnknown. 

lZDOfInter$ace 

t- 

: Interface t-) ZZD 

llDOflnterface= ZnterfaceSpecOf ; ZlDOjlnterfaceSpec 

Interface Traversal 
Because each interface is polymorphic with IUnknown, a 
pointer to any interface can be treated as a pointer to 
IUnknown; so QueryInterface can be called through any 
such interface. The purpose of QuegZntevace is to allow a 
client with a pointer to one interface to navigate to other 
interfaces. In the rest of this paper we ignore the distinction 
between interfaces and pointers to interfaces, WC thus 
model the QuevZnte&ce operation of each interface as a 
partial function QZ that maps the interface and a given ZZD 
to another interface. 

QZ : Interface xZZD -H ZnterJace 

The COM standard requires that it be possible to obtain an 
interface of type ZZD-ZUnknown by calling QuevZnterface 
on any interface. We represent this requirement in our 
theory with a predicate stating that QZ be defined for every 
interface with ZZD-ZUnknown as the given ZZD. 

lnteflace x {ZZDJUnknown} G dom Ql 

Components 
For our purposes, a COM component is an object that 
exposes a finite set of interfaces. The set of interfaces 
exposed by an object is defined recursively. -Every object 
exposes a distinguished interface that satisfies at least the 
ZUnknown specification. In COM, this interface is called 
the distinguished ZUnknown of the object. If defined, the 
result of applying QZ to an interface of an object is another 
interface on the same object. We define the set of ZZDs of an 
object to be equal to the set of ZZDs of the specifications 
that are satisfied by the individual interfaces of the object. 

- Component 
Znteflaces : lF lntet$ace 
iids : [FZZD 
iunknown : Znterjhce 

iunknown E Zntetiaces 
V i : lnter$ace; d : ZZD 

I i E Interfaces A (i, d) E dom Ql 
l Ql(i, d) E lnter$aces 

iids = IlDOflnterface {interfaces D 
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COM object identity is defined in terms of the distinguished 
ZUnknown interfaces of components. The basis for identity 
is the requirement that every call to QuevZntelface made 
through any interface of an object, \vith ZZD-ZUnknown as a 
parameter, always returns the same, distinguished 
ZUnknown interface of that object. The identity axiom of 
our model formalizes this requirement. 

V X : Component; i : Znterjace [ i E Xhterjixes 
l QZ(i, IZDJUnknown) = X.iunknown 

COM defines object identity as follows: Given any two 
interfaces, you determine whether they are interfaces on the 
same object by querying for ZZD-ZUnknown through each, 
then comparing the returned interfaces (pointers). We 
formalize COM object identity as a binary relation =com. It 

is easy to see that =com is an equivalence relation. 

=eom - : Component H Component 

k 

VX, Y : Component 
l X=com Y a X.iunknown = Y.iunknown 

At the heart of COM are rules governing QueryZntelface 
operations that are intended to ease inter-object interface 
negotiation. COM requires that the QuevZnterface 
operations of an object allow clients to get from any 
interface on that object to any other with one call to 
QueryZntelface [ 181. 

COM thus demands that Querylnterface operations be what 
it calls reflexive, symmetric and transitive. Contrary to our 
intuition, and to what we believe to be common 
understanding, COM does not require reachability of 
inter$aces one from another but only the ability to get from 
one trpe of interface to another. 

Our initial theory modeled all interfaces as following the 
QueryZnte$zce rules. That theory led to the conclusion, 
contradicted by the developers of COM, that selective 
hiding of interfaces was illegal. 

To obtain a theory consistent with both the published 
specification and the stated intentions of the COM 
designers, we changed our theory to model those interfaces 
that do have the reflexivity, symmetry, and transitivity 
properties as a subset of Interface called COMZntelfaces. 
Thus, elements of Zntelface no longer model legal COM 
interfaces alone. The first requirement on a legal COM 
interface is that its QueryZntelface operations return 
interfaces that actually have the requested ZZDs. 

I COMZnterfaces : P Inter&e 

Vi : Inter&e; cl : ZZD 
I i E COMZnter$xes A (i, d) E dom QZ 
l QZ(i, d) H d E ZZDOflnter$ace 

In the following paragraphs, we formalize the 
QueryZnte@zce rules. First, COM defines reflexivity to 
mean that if you have a legd COM interface i with type 
ZZD-Some, then calling QueryZntelface on i for ZZD-Some 
must succeed. It is not required that the returned interface 
be i itself, unless i is the distinguished ZUnknown and 
ZZD-Some is ZZD-ZUnknown. Recall that ZZDOjlnte@xe 
associates an interface with all of the ZZDs that it satisfies. 
We formalize the COM notion of reflexivity by stating that 
the domain of QZ contains the subrelation of ZZDOjlnterface 
restricted to the subset of legal COM interfaces. 

COMZnterfaces 4 ZZDOjIntetiace C dom QZ 

Second, COM defines symmetry to mean that if you have a 
legal COM interface i of type ZZD-Some, and if calling 
QueryZnterface on i with ZZD-Other succeeds in returning 
an interface p, then calling QueryZnterjhce on p with 
ZZDJome must also succeed. Informally, if you can get 
from here to there, you can get from there to here [lS]. The 
subtlety, again, is that “here” and “there” refer to interface 
types. The formal statement encodes this property, 
requiring in particular that it holds for all legal COM 
interfaces. 

t/a, b : Znteqace; iidA, iidB : ZZD 
1 {a,b} E COMhterfaces A (a, iidB) E dom QZ 
l a H iidA E ZZDOffnter$ace A QZ(a, iidB) = b 

z (b, ii&l) E dom QZ 

Finally, the COM specification defines transitivity to mean, 
informally, that if QueryZnterjhce can get you from “here to 
there” and “there to somewhere else,” it can get you “here 
to somewhere else.” The formal statement is similar to 
those in the preceding paragraphs.’ 

’ The specification actually gives an unorthodox definition 
of transitivity: informally, that you can get “from elsewhere 
back to here.” The definition is not equivalent to the 
ordinary definition of transitivity, and it is not strong 
enough to ensure that QueryZntetface operations have the 
required “anywhere-in-one-step” property. We therefore 
interpret the COM specification as using an erroneous 
definition of transitivity; and we have used the common 
definition in place of the unorthodox one. 
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Vu, b, c : Interface; iidA, iidB, iidC : IID 
1 {a,b,c} C COMInterjaces 

A {(a, iidB>, (b, iidC)} E dom QI 
e a w iidA E IIDOflnterjke 

A Q1(a, iidB) = b A QI(b, iidC) = c 

3 (a, iidC) E dom Q1 

Just as we had to distinguish legal COM interfaces, we also 
had to distinguish legal COM objects. We model legal 
COM objects as a subset of Component whose elements 
have only legal COM interfaces. 

I C E COMObjects 
l C.Interfaces c COMInterfaces 

A simple property of QueryInterface 
At certain points in formulating our theory, we found it 
prudent to test it against well-known properties of COM. 
Although not stated in the specification, the set of interface 
types of an object is supposed to be closed in some sense 
under Querylntelface. Goswell asserts, “The set of interface 
IDS [of an object] accessible via QueryInterface is the 
same for every interface.... [ll].” The following statement 
formalizes this property. In essence, it states that from any 
interface on an object the same set of interface types is 
accessible: namely, the set of all interface types exposed by 
the object. A simple proof, given in the appendix, provides 
support for the theory insofar as it shows that the theory 
makes valid predictions. 

Lemma: Totality of QZ 
If C is a legal COM object, and if iidA is a type of an 
interface exposed by C, then from any interface i of C it is 
possible to obtain an interface of type iidA with one call to 
Querylnterface. 

t/C : Component; i : Interface; iidA : IID 
1 C E COMObjects A iidA E C.iids A i E C.lnte@ces 
l (i, iidA) E dom QI 

Aggregation 
In this section, we present the final part of our theory: a 
model of COM aggregation. We model the containment 
relation imposed by aggregation, and the rules governing 
both the interfaces of aggregated components and the 
implementations of their QuevIntelface operations: 
specifically the COM nations of delegating -and non- 
delegating inner interfaces. 

First, as formalized in the Z axiom below, we model 
component hierarchy as a relation, Aggregates, on 
components (not just on legal COM objects). This 
formalization is abstract, but sufficient for our purposes. 
We model the export by outer objects of interfaces that arc 
provided by inner objects by requiring that for any pair of 
objects (outer, inner) in the Aggregates relation, at least 
one interface of inner also must be an interface of outer. 

Next, we model what COM calls the non-delegating inner 
IUnknown of an aggregated object (the unique interface h 
in the axiom below). We explain the need for this interface 
in the next paragraph. The implementation of 
QueryZnte@zce on this interface always returns interfaces 
on the inner object. The outer object uses this interface to 
obtain inner interfaces that will be exposed to clients, 

Third, we model the COM concept of delegating inner 
interfaces. The COM specification requires that all 
interfaces of inner objects other than the non-delegating 
IUnknown delegate Queryhterface calls to the outer, One 
reason for this requirement is that Query1nterface 
operations provided by interfaces exposed to clients of the 
outer must return only interfaces on the outer object, 
whether or not those interfaces are provided by the inner 
object. Delegation ensures that this requirement is satisfied. 
We model delegation as a constraint on the Q1 function. 
For any delegating inner interface i we require that its QI 
function (i-e., the function obtained by fixing the first 
parameter of QZ to be i> be equal to the QZ function of one 
of the interfaces of the outer object. 

t 

lggregates : Component H Component 

f r, 0 : Component I 0 c-) r E Aggregates 
sharing of at least one intcrfacc 

0 I.Inter@es n O.inte@Xes f 0 
hidden non-delegating inner IUnknown 

A (3, h : Inter&e 1 h E Llnterjkes \ OJnterfaces 
A hterJaceSpecOfcl{ h}D = {IUnknown) 

delegation of all but one QI 
0 3 0 : Interface 1 0 E O.interfaces 

l Vi : Intetiace I i E IJnterfaces \ {h} 
l ({i} XrrD) a Qr = ((0) XrrD) a Qr> 

TWO THEOREMS OF COM 
We now present our two main theorems. As consequences 
of a theory that we believe models COM, these theorems 
make precise and explicit two critical architectural 
properties of COM that we had to understand in order to 
reason effectively about our proposed architectural style. 



Theorem 1: COM Component Identity 
If a component oufer aggregates a component inner then 
outer and inner share object identity as defined for COM 
components. 

VI, 0 : Component l 0 I+ I E Aggregates a I =com 0 

This property of COM is not made explicit in the COM 
specification, but we find support for it in Goswell’s 
cookbook [ 111. A simple corollary is that all components 
within an aggregate share identity. The proof of this 
theorem is given in the appendix to this paper. 

Theorem 2: Information Hiding 
Let outer be a component that aggregates a component 
inner. If inner is a legal COM object, then the set of types 
of interfaces exposed by outer must include the set of types 
of interfaces exposed by inner. 

VI, 0 : Component 1 0 I+ I E Aggregates 

l I E COMObjects a I.iids C O.iids 

The contrapositive of the theorem, which is also true in the 
theory, states that if outer does not expose interfaces with 
ZZDs matching those of all inner interfaces, then inner is not 
a legal COM object. To the best of our knowledge, this 
property is not documented explicitly in any description of 
the standard. The proof is in the appendix. 

ANALYSIS OF TWO ARCHITECTURAL STYLES 
In this section we analyze two architectural styles using the 
theorems that we have proven. First, we present additional 
support for our theory by showing that the predicted 
properties of COM are not problematical when COM is 
used in the traditional COM style. Then we discuss the 
difficulties that we faced when we tried to use aggregation 
in our innovative architectural style. 

The OLE Container and Control Style 
The traditional usage of COM aggregation is called the 
OLE control and container idiom. In this style, an outer 
component wraps an aggregated component, usually an 
OLE control [5]. In the simple case, the outer exposes all of 
the interfaces of the inner except for its non-delegating 
IUnknown. The outer provides additional interfaces 
supporting additional services. For example, the outer 
might add an interface allowing the inner control object, 
such as a button, to be managed by a container object, such 
as a Visual Basic form [24]. The added interface would 
support placement-on-form information. In other cases, the 
outer hides some inner interfaces. 

In both cases, the component identity theorem tells us that 
the outer and inner components share identity. This merging 
of identity creates no serious architectural problems 
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because the only client of the inner is the outer, which treats 
the inner as a hidden implementation detail. 

Nor does the information hiding property of COM present a 
problem. If the outer exposes all interfaces of the inner, 
then by definition it exposes interfaces with all of the types 
of the inner interfaces, and so the status of the inner object 
as a legal COM object is not necessarily compromised. If 
the outer hides some inner interface types, the inner is not a 
legal COM object; but, again, the consequences are limited 
because the outer treats the inner as a hidden 
implementation detail to which it has exclusive access. 

Because the traditional use of aggregation in a control and 
container style does not conflict with our theory, it is not 
surprising that this common usage has not revealed the 
architectural subtlety of aggregation in general. We view 
the compatibility of our theory with the common usage of 
COM as further evidence supporting the theory. 

Our Proposed Architectural Style 
The key difference between the traditional usage of COM 
aggregation and our proposed usage is that in our style 
aggregated components will have clients, such as mediators, 
other than the aggregating outer components. See Fig. 3. 
Our theory revealed this proposed architectural style to be 
untenable. 

First consider object identity. If a mediator within an 
aggregate compares apparently distinct but aggregated 
components for identity, it finds them to be identical. The 
loss of object identity within an aggregate can be a serious 
matter when what is aggregated is a subsystem having 
multiple, interrelated components. 

Second, consider information hiding [16,17]. We find 
ourselves on the horns of a dilemma. Either the outer object 
exports interfaces whose types include all of those of all 
aggregated inner components, including interfaces intended 
solely to support the integration of the component parts; or 
our mediators cannot assume that the components that it 
mediates are legal COM objects. 

In both cases information hiding is compromised. In one 
case, selective hiding of subsystem interfaces is precluded, 
and thus so is abstraction of the aggregated subsystem. If 
selective hiding is employed, then the mediators can no 
longer treat the objects that they mediate as legal COM 
objects because they will not follow the QueryIntelface 
rules. In light of Rogerson’s pithy remark, that “There is 
nothing as important to COM as QueryZntelface [lS, p. 
561,” we have to view failure to follow the rules of 
QueryZntelface as an architecturally serious matter. 



The second information hiding problem bears additional 
discussion. It has two aspects. First, as Pamas notes in 
“‘Designing Software for Ease of Extension and 
Contraction,” information hiding is a general concept in 
that “. . . as far as possible, even the presence or absence of 
a component should be hidden from other components [17, 
p. 2291.” However, the presence of an outer is not hidden 
from mediators, because aggregation compromises the 
architectural properties of the mediated objects. 

Second, because mediators can not depend on mediated 
components having COM-defined architectural properties, 
it is necessary to have ad hoc rules for aggregated objects. 
Given that our architectural style depends on selective 
hiding of inner interfaces, we decided that we had to require 
designers of Herman components to follow such rules. Our 
use of formal methods to reason precisely about the COM 
standard led us to change our architectural style. 

SUMMARY OF RESULTS 
We present a number of results. First, we developed a 
formal theory of subtle aspects of a widely used software 
architectural standard. The theory might be of considerable 
value to practitioners. In particular, it provides a basis for 
documenting subtle but important aspects of COM. 
Second, although our architectural style appeared to be a 
natural, compositional use of COM, we showed through 
formal reasoning that it was much more problematical than 
it appeared to be at first. Third, this discovery helped us to 
avoid a serious architectural design error in a commercial 
development project before it harmed the firm. Fourth, we 
demonstrated the profitable use of formal methods “in-the- 
small,” not for requirements specification but to help us to 
reason about one difficult architectural design problem. 
Finally, in the methodological dimension, we have 
emphasized the role of an empirical approach to developing 
formal theories of architectural standards. When imposed 
on the world of software, standards impose interesting, 
stable structures that are amenable to empirical scientific 
study, with the potential for interesting results. 

Having demonstrated that COM has subtle but critical 
architectural properties, we believe we have built a case for 
treating widely used architectural standards as critical 
infrastructure systems. The lack of a characterization of 
important but subtle properties shifts significant, 
undisclosed costs and risks onto adopters of such standards. 
Our case focused on the use of formal methods to make 
architectural properties of such standards explicit; other 
applications of formal methods are clearly possible, too, 
such as identifying ambiguities and inconsistencies. 

RELATED WORK 
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Related work falls in several categories, especially software 
architecture and formal methods. At the intersection of 
these areas are results such as those of Abowd et al. [l], 

Luckham [13] and Garlan and Shaw [lo]. Our work is 
most closely related to, and most influenced by, that of 
Abowd et al. and Garlan and Shaw. 

Formalizing Software Architecture 
Abowd et al. provide a comprehensive framework within 
which a broad range of abstract architectural descriptions 
can be given precise semantics, enabling analysis and 
comparison of abstract architectural styles. The authors 
observe that formalizing architecture can help designers to 
ask and answer interesting questions about such styles, 

We agree. By way of contrast, our objective was not a 
generalized approach to formalizing descriptions in a range 
of styles. Rather, we were driven to a minimal use of 
formalism because we found that without it we could not 
confidently answer key questions about our specific, 
concrete architectural style: Was it legal with respect to the 
specific, widely used standard on which it was based? 

Our theory makes no attempt to model dynamic semantics. 
We didn’t have to do that to answer our particular 
questions. Both Luckham and Garlan model dynamic 
semantics at the architectural level: as event orderings in 
Rapide, and fair scheduling in pipe and filter architectures, 
for example. Nor does our theory contain any generalized 
concept of connectors. The only inter-component relation 
that we model is aggregation. We have tried to use the 
minimal sufficient formalism. 

On the other hand, our theory appears to be richer than that 
of Abowd et al. in other dimensions. We model a complex 
relation over interfaces (corresponding to ports in Abowd et 
al.), namely the QueryZnterface relation. We also model the 
effect on this relation of a separate relation between 
components, namely aggregation. In Abowd et al., there 
appears to be no corresponding concept of either 
relationships among ports, or of interactions between inter- 
port relationships and inter-component relationships, such 
as aggregation. 

Despite the differences in focus and generality, our work 
overlaps with that of Abowd et al. on one important issue: 
the compositionality of architectural styles. Abowd et al. 
show that within their theory, pipes in pipe and filter 
architectural styles are compositional, but that components 
that announce events in implicit invocation styles are not 
compositional. We showed that legal COM objects are not 
compositional under aggregation. 

It is not surprising that we both focus on compositionality. 
It is a critical property of any architectural style, because it 
greatly facilitates the construction of new systems from 
existing parts. Complications in compositionality arc thus 
of deep concern to the architect. In this paper, we 
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characterize previously undocumented complications in the 
compositionality properties of an important and widely used 
architectural standard. 

Formal Methods and Software Standards 
Our concern for the integrity of standards is not new. Nor is 
it surprising that subtleties that have not been analyzed can 
have astonishing consequences. Ardis et al. noted that 
ambiguities in the specification of a telecommunications 
protocol make it “ . ..possible to completely defeat the 
protection switching protocol, causing the communication 
link to fail, even though there was at least one working line 
in each direction [2].” They then express the hope that 
“...future authors of standards will consider using formal 
languages, so that ambiguity can be minimized.” 

Our experience lends support to Ardis et al. Formal 
methods appear to have an important role to play in 
validating widely used standards. Until a standard has been 
subject to rigorous analysis, however, and the results of the 
analysis made available to users, the costs of reasoning 
about the conformance of designs to the standard and the 
risks of not doing so are shifted onto its users. Our 
experience shows that it is possible for even a small firm to 
use formal methods profitably, “in-the-small,” with modest 
coverage and rigor, to reason about difficult design issues. 

Object Models 
Bryant and Evans [6] discuss a formalization of the 
CORBA object model in Z, but neither the model or any of 
its consequences is presented in detail. The purpose of the 
specification that they emphasized was to help resolve 
ambiguities and inconsistencies in the specification to 
facilitate negotiation among those defining the standard. 
The extent to which this work has progressed is unclear. 

CONCLUSION 
We have developed a formal theory of certain aspects of the 
COM architectural standard. From the theory we deduced 
subtle and counterintuitive but architecturally important 
properties of COM. An initial, modestly formal theory was 
sufficient to reveal problems in the proposed architectural 
style for the Herman multimedia-authoring environment. A 
subsequent test of the theory indicated that our conclusions 
were not precisely correct; however, the required changes 
did not fundamentally change our conclusions about COM 
or our proposed architectural style. 

To build additional confidence in the amended theory, we 
decided to express it more precisely. We formalized the 
initial, back-of-the-envelop theory by writing it in 2, 
checking its syntax using the Z/Eves theorem prover, and 
expressing and proving our main theorems rigorously. We 
have not yet verified our proofs mechanically. 

Socha Computing benefited most from our early, modestly 
rigorous analysis, and from the feedback obtained when we 
subjected our initial conclusions to review. Nevertheless, 
our subsequent emphasis on increasing rigor was useful. 
Like COM, we found our theory itself to be unexpectedly 
subtle. The more aggressive use of formalism led us to a 
theory that is more convincing to us and in which we thus 
have significantly greater confidence. 

While our discoveries about COM came as surprises, Socha 
Computing, Inc. has not changed its decision to use COM 
for its Herman system. In fact, COM is being used as 
aggressively as at first envisioned. We find the design of 
COM elegant and innovative. COM is the object standard 
for many applications in very wide use. COM isn’t broken. 

Nevertheless, COM and comparable standards do define the 
foundations of vast numbers of important programs. These 
standards are thus important infrastructure systems, and 
should be specified with commensurate care. The presence 
and the implications of any major subtleties must be 
explicated. We used formal methods at varying levels of 
rigor, profitably, to reason about one such architectural 
standard and to verify the conformance of a design to it. 

As to who should bear the costs of reasoning about such 
subtleties, and the risks of not reasoning, that is an extra- 
scientific issue to be resolved by extra-scientific means: the 
market, policy, etc. We would prefer to see the designers 
of such standards perform the necessary reasoning, so as 
not to expose adopters to undisclosed risks. Perhaps the 
research community can influence the incentive field by 
subjecting real systems and real standards to scientific 
study. 
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APPENDIX: PROOFS OF THEOREMS 

Proof of Totality Lemma: 
Suppose that 
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C : Component I C E COMObjects 

i : Intetjiace I i e Chterfaces 

ii&4 : ZZD 1 iidA E C.iids 

Then 
3 a : Interface I a E C.Znterfaces 

l a I+ iidA E ZIDOflitterJxe 

By the identity axiom of QI 
QZ(i, ZZD-IUnknown) = QZ(a, ZZD-IUnknown) = 

C.iunknown 

By symmetry of QZ (C.iunknown, iidA> E dom QZ 

Then by transitivity of QZ (i, iidA) E dom QZ 

cl 

Proof of CON Identity Theorem: 
Suppose that 
I, 0 : Component IO H I E Aggregates 

Then by an axiom of aggregation 
3 2 : Znter$ace 0 2 E OJnterfaces n I.Znte$aces 

Thus by the identity axiom we have 
Liunknown = QZ(z, ZIDJUnknown) = O.iunknown 

And so I =com 0. 

cl 

Proof of Information Hiding Theorem: 
Let I, 0 : Component 

1 I E COIvfObjects A 0 I+ I E Aggregates 

Let iidX : ZZD 1 iidX E Z.iids . 

We shall show that iidX E O.iids. 

By Identity Theorem 
Z.iunknown = O.iunknown 

Since iidX E Z.iids, 

3 x : Interface I x E I.Znter$aces 

l x H iidX E ZZDOjInterface. 

By Identity Axiom 
QZ(x, ZZDJUnknown) = I.unknown = O.iunknown 

Note that O.iunknown is in COMZnte$aces since it is also 

an interface of a legal COM object I. 

By symmetry, (O.iunknown, iidX) E dom QZ. 

Considerx, : Interface I xf = QZ(O.iunknown, iidX). 

Since O.iunknown E O.Inter$aces, xl E O.Znterfaces by 

definition of Component type. 

Also, XI I-+ iidX E ZZDOflnterface because 

O.iunknown B COMInterfaces and by the definition of 

COMInter$aces 

QZ(O.iunlcnown, iidx) I+ iidX E ZZDOjInterface. 

Thus iidX E ZZDOflnter$ace a O.Znte$aces D = O.iids. 

0 
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